PERFORMANCE EVALUATION OF DYNAMIC LOAD
y
BALANCING ALGORITHMS IN DISTRIBUTED COMPUTING

SYSTEMS

]

1

J—

By.l e e

L i ,“’

.]
Rania Ali Najy Etoom ;
o

'

C At

A . - e —

Supervisor

— T — —— [PR — can

"’ Dr. Sami I..Serhan__,

——ar——

1

wa o #

- e

This Thesis was Submitted in Partial Fulfillment of the Requirements for the

Master’s Degree of Computer Science.

Faculty of Graduate Studies

The University of Jordan

il bty ol £l aadas
ol oy Foill ndm |
C‘\

August, 2010

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

The University of Jordan

Authorization Form

I, Rania Ali Naji Etoom, authorize the University of Jordan to supply copies
of my Thesis/ Dissertation to libraries or establishments or individuals on

request, according to the University of Jordan regulations.

Signature: /7’

&

Date: 12/8/2010.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

COMMITTEE DECISION

This Thesis /Dissertation (Performance Evaluation of Dynamic Load

Balancing Algorithms in Distributed Computing Systems) was Successfully

2917 /200

Defended and Approved on

Examination Committee Signature
Dr.Sami L. Serhan, (Supervisor) c,/,;}g’"’@
Associate Professor of Computer Design

Dr.Mohammad Sulieman Qatawneh, {(Member)

Associate Professor of Parallel Systems and Networks

L
Dr.Basel Ali Mahafzah, (Member) &;

Assistant Professor of Distributed & Parallel Computing, and Interconnection

Networks.

Dr. ZIAD A.A. ALQADI, (Member) *

Associate Prof. Of computer engineering

{(Al-Balga "Applied University)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

DEDICATION

This work dedicated to my father, mother, brothers, sisters, and husband.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

v

AKNOWLEDGEMENT

I would like to express my deepest appreciation to Dr. Sami 1. Serhan for his

support to finish this work.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

TABLE OF CONTENTS
Subject Page
Committee DECISIONiieiii i e, 11
DediCationiiiiii i e I
Acknowledgementiviiiii e v
Listof Contents.........ccocoovvviiiiiiiiiinniniaiin, \Y
List of Tables ...uv i e VII
List of Figures and Plates..........ooveviiinniiiiii oo IX
List of EQUations........oouu i e X1
List of Abbreviationsooiiiiiiiii e Xl
ADSIFACE ...ovtiiii e XV
Lodntroduction ... 1
L1 Distributed Systems. ..ot]
1.2.Load Balancing.co.oviiiiii i e 2
1.2.1. Load Balancing Approaches.............ooeeueeueiiiies 3
1.2.2. Load Balancing Categories.covvumveeeriesie e 5
1.2.3. Load Balancing Policies. . .coewr.iuivreeceeeeeeeeeeenessoseseseeseeseooo. 7
1.2.4. Load Balancing Parameters..............covvueeueeemnviniieie, 8
1.3. Thesis Organization.............cooooiiiiii i e 10
2. Background and Literature ReVieW..............ooveeeimmoeiins 11
2.1 Introduction........oooii 11
2.2 Related WOrK.....o..ovmmieiiiii e 20

3. Enhanced Dynamic Biasing Algorithm for Load Balancing in Hierarchical

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Vi

Distributed Systems. oo e
3 OVEIVIEW e e s
3.2. The System Model... ..o e
3.3. The Proposed Scheme Assumptions..............co.oooovivinieiiinsiieen.

3.4, Determining Suitable Time Intervals

3.5. Enhanced Dynamic Biasing Algorithm with CPU Utilization (EDBA-CPU-U)..
351 Methodology.oenviiiii e
3.6. Enhanced Dynamic Biasing Algorithm with Process Migration (EDBA-PM)..

3.6.1. Methodology

3.6.2 Process Migration Policy Used in the Enhanced Scheme

3.7, SIMUlation Cases. ..o

4.5.1. Homogeneous Distributed Systems

...

4.5.1.1 Constant Arrival Rate of Tasks

4.5.1.1.1 EDBA-CPU-U

4.5.1.1.2 EDBA-PM

..

23

23

24

26

27

28

28

30

31

32

34

35

35

35

38

39

39

40

40

40

43

44

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Vil

4.5.1.2.1 EDBA-CPU-U

..

4.5.1.2.2 EDBA-PM

...

4.5.2. Heterogeneous Distributed Systems

4.5.2.1. Constant Arrival Rate of Tasks

4.5.2.1.1 EDBA-CPU-U

4520 2EDBA-PM.. i e,

4.6 Results Summary

5. Conglusions and Future Works

5 CONCIUSIONS ..t e et

...

45

46

47

48

48

49

51

51

53

34

55

55

56

57

65

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Vil

LIST OF TABLES
NUMBER | TABLE CAPTION PAGE
1.1 Categortes of Load Balancing Techniques | 6
4.1 Determining Simulation Intervals 35

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

IX

LIST OF FIGURES
NUMBER | FIGURE CAPTION PAG
E
1.1 Distributed Computing Systems Types]
2.1 Underlying Distributed System 21
3.1 Underlying Distributed System Structure 25
3.2 Simulation cases : 33
4.1 The Node level of EDBA-CPU-U Algorithm. 36
4.2 The Process Model of LLB 37
43 The code of the arrival state of the FSM 37
4.4 Response time with varying number of tasks for EDBA-CPU-U 40
with constant arrival rate of tasks in homogeneous DS
4.5 Response time with varying number of processors for EDBA- 41
CPU-U with constant arrival rate of tasks in homogeneous DS
4.6 Throughput with varying number of tasks for EDBA-PM with 42
constant arrival rate of tasks in homogeneous DS
4.7 Throughput with varying number of processors for EDBA-PM 43
with constant arrival rate of tasks in homogeneous DSs
4.8 Response time with varying number of tasks for EDBA-CPU-U 44
with variable arrival rate of tasks in homogeneous DS
4.9 Response time with varying number of processors for EDBA- 45

CPU-U with variable arrival rate of tasks in homogeneous DS

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

4,10 Throughput with varying number of tasks for EDBA-PM with 45
variable arrival rate of tasks in homogeneous DS

4.11 Throughput with varying number of processors for EDBA-PM 46
with variable arrival rate of tasks in homogenecous DS

4.12 Response time with varying number of tasks for EDBA-CPU-U 47
with constant arrival rate of tasks in heterogeneous DS

4.13 Response time with varying number of processors for EDBA- 48
CPU-U with constant arrival rate of tasks in heterogeneous DS

4.i4 Throughput with varying number of tasks for EDBA-PM with 49
constant arrival rate of tasks in heterogeneous DS

4.15 Throughput with varying number of processors for EDBA-PM 49
with constant arrival rate of tasks in heterogeneous DS

4.16 Response time with varying number of tasks for EDBA-CPU-U 50
with variable arrival rate of tasks in heterogeneous DS

4.17 Response time with varying number of processors for EDBA- S
CPU-U with variable arrival rate of tasks in heterogeneous DS

4,18 Throughput with varying number of tasks for EDBA-PM with 52
variable arrival rate of tasks in heterogeneous DS

4.9 Throughput with varying number of processors for EDBA-PM 52

with constant variable rate of tasks in heterogeneous DS

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Xl

LIST OF EQUATIONS
NUMBER EQUATION CAPTION PAGE
l l.oad Evaluation 28
2 State Information exchange policy 28
3 Biases Calculation 29
4 Load Evaluation 30
5 Decision of process migration 30
6 State Information exchange policy 30
7 Biases Calculation 31
8 Percentage Difference 36

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Xl

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

LIST OF ABBREVIATIONS
ATS The Augmented Tabu-Search Algorithm
CORBA Common Object Request Broker Architecture
CPU-U CPU Utilization
DAG Direct Acyclic Graph
DBA Dynamic Biasing Algorithm
DCS Distributed Computing System
DLB Dynamic Load Balancing
DM Decision Making
DNS Domain Name System
DOS Distribute’d Operating System
DR Designated Representative
DS Distributed System
EDBA Enhanced Dynamic Biasing Algorithm
EDBA-CPU-U Enhanced Dynamic Biasing Algorithm-CPU-Utilization
EDBA-PM Enhanced Dynamic Biasing Algorithm-Process Migration.
EPSTS Enhanced Positional Scan Task Scheduling Algorithm
FIFO First-In-First-Out
GLB Global Load Balancer
HEFT Heterogeneous Earliest-Finish Time Algorithm
HPF High Performance Fortran
HPTS Heterogeneous Parallel Task Scheduler

Xl

HL Heavily Loaded

ISR Interrupt Service Routine

IWM Incremental Weight migration

JI Job Interval

JQ Job Quantity

LB Load Balancing

LIB Load Imbalance

LL Lightly Loaded

LLB Local Load Balancer

MAS Muiti-Agent System

ML Moderately Loaded

MLSRR Minimum Load State Round Robin

ORB Object Request Broker

0Q Ordinary Queue

0S Operating System

PN Primary Node

PS Processing Speed

PSI Periodic Symmetrically-Initiated

PSLS Positional Scan Load Balancing algorithm
PSTS Positionat Scan Task Scheduling algorithm
RNS The Recursive Neighbor Search algorithm
RQ Restart Queue

SLB Static Load Balancing

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

XV

TI Transfer Interval

TP Transfer Policy

TS Transfer Size

TT Transfer Threshold

SN Supporting Node

TA Task Assignment

TAPTF Task Assignment based on Prioritizing Traffic Flows
TAPTF-WC Task Assignment based on Prioritizing Traffic Flows with Work-

Conserving Migration

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

XV

PERFORMANCE EVALUATION OF DYNAMIC LOAD
BALANCING ALGORITHMS IN DISTRIBUTED COMPUTING

SYSTEMS

BY

Rania Ali Najy Etoom

Supervisor

Dr. Sami 1. Serhan

In this study we focus on achieving load balancing in distributed systems of hierarchical
structure by enhancing a dynamic algorithm. In the Dynamic Biasing Algorithm (DBA)
the current]oa;:l state is measured by CPU queue length to distribute load among nodes
based on their current load state.

Two proposed algorithms are presented, in the first algorithm the load state is measured
by the CPU queue length as in the original algorithm DBA, in addition to the CPU
utilization rate. This new load index (CPU utilization) increases the system performance
because it makes the nodes busy most of the time. It increases the system performance by
62.9% in terms of response time factor.

The second proposed algorithm is done by inserting the job migration policy among
nodes. A specific threshold that is changed adaptively is compared by the load state of

nodes periodically, if the node is heavily loaded (its load state is larger than threshold),

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

XVI

then the process migration policy is executed by transferring some of its load to another
node.

This enhancement increases the performance of the system in terms of throughput
especially when the system is heavily loaded. The migration policy helps in achieving the
load balancing because it makes all nodes have the same load approximately, and

increasing the system performance accordingly. It increases the system performance in

terms of throughput factor by 37%.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

1. Introduction

The fast expansion of utilizing computers including software and hardware, increases

the need for resource sharing applications, and increases the workload across the

Internet. On the other hand, it eases the process of linking various distributed computers
through the network, allowing them to execute the load in parallel and to cooperate in
finishing some tasks to decrease the turnaround time.

Most of the cases the load is too much and becomes the bottleneck of the system, this
problem can be solved by increasing the size of the computers in the Distributed
System, or distribute the load among the processing nodes in an efficient manner. The

load redistribution termed Load Balancing.

1.1. Distributed Systems

Distributed Computing System (DCS) is a set of processing nodes that can be PC’s,
workstations, etc. interconnected together by a network, they cooperate together to
finish a specific task in a minimum amount of time. DCS has the advantage of resource

sharing among the nodes eased by the network, which increases the performance and

the reliability of the system. Figure 1.1 shows the types of DCS.

Figure 1.1: Distributed Computing Systems Types
Heterogeneity can be in networks, computer hardware, operating systems, and
programming languages, Heterogeneous DCS is constructed from several processing

nodes that differ in the previous characteristics. And all nodes in a Homogeneous DCS

have the same properties.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

There are two main reasons for using distributed systems and distributed computing:

1) Type of the application may need the use of a communication network that

connects several computers.

2) Tt is more beneficial to use a cluster of several low-end computers instead of

using one high-end computer because, we can get the desired level of

performance in a less cost and the DCS is easier t0 expand than uni-processor

system, moreover the DCS is more reliable than the other non-DCS, as there is

no single point of failure.

1.2. Load Balancing

Chen, et al. (2008), Devine, et al. (2005), Spies (1996), and Sharma, and et al. (2008),

contribute that each node in the DCS is assigned a load, which is the amount of the

computational tasks that are taking the service or waiting for a service, and hence,

Workload of a node is the amount of time needed to accomplish all tasks assigned to the

node. The spatiotemporal assignment is described by two parameters:

1) J1(Job Interval): the time interval between two different load assignment.

2) JQ (Job Quantity): the size of tasks to be accomplished by each assignment.

Each node in the DCS has a two types of jobs, the Dedicated and the Generic jobs; it

has variants of the Dedicated jobs that impose constraints on the average response time,

and these jobs must be executed Jocally (in the node that generates it), in the other hand;

Generic tasks can be executed at any node in the system (ROSS, and YAOQ, 1991).

Consider a university, which forms a DCS and comprised of many departments or

faculties. Each department has its own computer system and resources needed to

execule and process its tasks. When a specific department. generates a task, then this

task has two cases of execution; first it must be processed locally in the same

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

department that generates it because, it requires its own resources. Or it is commonly
the case that this job is generic and can be processed in any computer system in the
other departments. Moreover, a given computer system in any department can have a lot
of jobs to execute, so it is Heavily-Loaded (HL), whereas another system is idle or
Lightly-Loaded (LL). Then, in order to improve the system performance, specifically
the average response time of jobs, an efficient Load Balancing (LB) mechanism should
be used to transfer some Generic jobs from the HL departments to the LL or the idle
departments, and distribute the load among the departments in a judicious way. Hence
we need two types of scheduling algorithms to control the assignment of jobs to nodes:
& Local scheduling: it is found in each node in the OS level, by distributing the

tasks to the time slots of the CPU.

Global scheduling: it is the distribution of tasks among nodes in the DCS,

»,
"

represented by LB, which is process of redistribution the generic jobs among ali
nodes to improve the performance of the Distributed System (DS). It ensures
that each node in the DS performs the same number of tasks approximately at
any moment of time, and if the load is balanced in the system, then you will not
find a HL- node and an idle node or a LL node at the same time.
LB algorithms are used to minimize the overhead of the communication network,
increasing the efficiency of the system in term of utilization rate, and the average
response time of the all tasks in the system, and Achieving the fairness among the

competitive applications, (Razzaque, and Seon Hong, 2006), and (Sharma, et al. 2008).
1.2.1 Load Balancing Approaches

Kwok, and Cheung, (2004), and Choi (2004); LB is needed to distribute the tasks

among the processing nodes in the DS in an effective way, to improve the performance

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

of the system, and minimize the average response time, by using one of the following
approaches:.

1. Network (application software) level: it is found in the Distributed-Web
architecture, and it is based on the Domain Name System (DNS) to apply the LB
techniques. When a client needs a specific service, he will send a request that
contains the symbolic name (the host name of the URL) to the DNS, and then
ihe DNS will make the decision of load balancing and translate this symbolic
name to an IP address of a particular server, to serve the request using the
mapping table stored in the DNS. DNS can assign different servers with
different IP addresses to the same request by using different policies such as the
Round Robin (RR) or the Random policy, so the service needed by the client can
be shared by more than one server.

2. Dispatcher based approach: it is found in the Distributed-Web Server network,
in this approach one of the processing nodes in the DS (called the dispatcher),
acts as a representative of all the other nodes in the system, this nod has an IP
address that is known to all other nodes (global). The dispatcher receives the
requests from all clients’ nodes in the DCS, and then it will make a LB decision

to distribute the different requests to possibly different nodes in the system, the
dispatcher commonly uses the simple policies, such as the RR or the Random
policy.

3. Operating System (OS) approach (Software}) level: in this approach the
Distributed Operating System (DOS) provides the LB methods such as process

migration', scheduling, etc, at the kernel Jevel. For example, the process in the

! Process migration: the process of transferring tasks from the source node to the destination node during
execution,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

AMOEBA-DOS, consults the kernel to assign it to the CPU that is most LL. But

not all kernels support such facilities, such as the Linux and the Windows

desktops OSs.

4. Middleware level approach: middleware is a class of software that is designed to
manage the heterogeneity and the complexity in the DSs. It is designed as a
middle software layer between the OS and the application program that provides
a common program abstraction across the DS; it is above the OS and below the
distributed application.

The Common Object Request Broker Architecture (CORBA), which is a
standard for distributed object computing is an example of the middleware that
can perform the common network programming tasks such as
Marshalling/Demarshalling, Error detection, and recovery.

When middieware-based LB is used in CORBA, it uses the Object Request
Brokers (ORBs) to receive all clients’ requests, and then distributes them to
Distributed Objects in different remote servers depending on the LB decision
based on LB algorithms, commonly it uses the Random, or the RR policies, that

are incorporated in the ORBs.

1.2.2. Load Balancing Categories

Kwok, and Cheung, (2004), Chen, et al. (2008), Grosu, and Chronopoulos, (2005).
Yang, et al. (2009) and Yan, et al. (2007) LB techniques may be divided into many
categories, each of them is used depending on the type of applications used in the
system, and we will give a brief description of these categories in Table.1.1

One of these categories is that LB technique can be static or dynamic. In this thesis we

will focus on the dynamic approaches, which are the more complicated but has a better

performance.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Tablel.1: Categories of Load Balancing Techniques

Division

First Category

Second Category

Location
Of
Decision
Making

(DM)

Centralized :

There is a node in the DCS that has
information about the entire system,
and responsible for controlling the
distribution of the loads to the other
nodes in a balanced manner.

The central node must be with a high
Processing power and high
communication speed, otherwise it
will become the bottleneck of the sys-
tem. It has a better performance. But
if the central node fails functioning,
then the LB is lost

Decentralized (Distributed):

Each node in the DCS is responsible for
information collecting and DM (Decision

Making) independently.

So, the DM is divided among all nodes in
the network, and each one of them has its
information about the entire system and
responsible for its share of DM of

scheduling.

Time

Of
Decision

Making

Periodic:

[n every time interval, a DM and
information collecting must be taken.
and is

The interval is constant

determined in advance.

Non-periodic:

The interval time is not constant. A DM
and collecting information can be taken

in any time, when the system needs that.

Changes
to

DM

Static:

All decisions of controlling the LB are
fixed and will not change as time
goes, because the work load is
distributed among the nodes in the
beginning of execution depending on
the processors performance.

1t has the disadvantage that allocation
of a node to execute a specific task is
determined when the task is created,
and cannot be changed while task
execution, or when the system
conditions changed. Examples of the
static policies are the RR and Random

Dynamic:

it takes the current load into
consideration to make decision of LB
more intelligently, because it distributes
the work load at run time.

It is more sophisticated than static but it
has a better performance, because It uses
the up-to-date state information of the
system such as the load ratio of each
node. It adds more overhead to the
system, because it has to collect, store,
and analyze state information of the
system but it can cope with the
dynamically changing circumstances of

policy.

the sysiem,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

1.2.3 Load Balancing Policies
When a specific LB algorithm is applied, then it is conditioned with some LB policies,
these policies are listed below:

1) Location Policy: it determines the destination node that will take part
accomplishing the load that cannot be finished soon by a busy node, its choices
of choosing the destination node(s) are:

& The destination node that will receive the load when it is transferred out from
the busy node is one of its neighboring nodes, it is chosen according to its
Processing Speed (PS), and utilization rate.

< All neighboring nodes are selected to share the load at a specific ratio.

2) Transfer Policy (TP): It determines if the node can take part in transferring a task
(as a sender or receiver), this can be done by determining if the node is busy

(sender), or an idle node (receiver). It is determined by the three parameters
listed below:

& Transfer Threshold (TT): When to consider the node whether it is overloaded or
not? This can be decided by comparing the load of the node by a threshold
value, if Load > TT then it is overloaded, otherwise it is LL.

& Transfer Interval (TI): it defines the period of collecting information and DM, to
determine when the LB mechanism should be operated in each node. The
interval should not be too short that will result in increasing the cost of

collecting unnecessary information, or too large that leads to lose the efficiency

of DM.

& Transfer Size (TS): it determines how much of the load should be transferred,
when the transfer policy makes a decision of transferring some loads. TS can be

too small, which means that the load to be transferred is limited. Or too big,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

which means that some of the transferred loads are unnecessary that results on

overhead on the communication network.

3) Selection Policy: It determines which load to be transferred, when transfer
policy decision is taken. It can be preemptive (it chooses the partially executed
tasks to be transferred with its state; it is expensive especially when the state is
large), or Non-preemptive (these algorithms choose the tasks that do not begin

execution to be transferred, and then there is no state to be transferred with the

tasks).

4) Information Policy: It determines when to collect information about the
system state, what type, from where, the amount, and how to use the state
information to be collected, this policy can be activated in Fixed state (no
exchange of state), in Demand driven in process of LB, periodic exchange, or

when State changes.

The previous policies must be taken into account altogether, and the suitability of one
parameter depends on the other parameters, the goal is to find the appropriate values of
them to get an efficient LB mechanism (Kwok, and Cheung, (2004), Chen, et al. (2008),
Razzaque, and Hong (2007)).

1.2.4 Load Balancing Parameters

Sharma, et al. (2008), and Gross, (2005), a LB algorithm performance is measured by

the following parameters:

1) Fault tolerant: it gives the ability of LB algorithms to continue functioning

properly, or stop functioning when a failure occurs. If the algorithm stops

working, then the degradation of its performance is proportional to the failure

Seriousness.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

2) Forecasting accuracy: it is the extent of similarity between the actual results that

will be created after execution and the predicted values of the calculated results.

Static algorithms are befter than the dynamic algorithms; regarding this factor.

3) Stability: this parameter can be described by:

& The delay that occurs when transferring information between processing

nodes.

& The time improvement obtained by the improved LB algorithms, which
gives a better performance in a faster amount of time.

4) Centralized or Decentralized.

- Center of Thesis Deposit

5) Nature of LB algorithm: whether it is static or dynamic.

6) Cooperative: it determines the degree of independence among the nodes to

decide how they will use their resources to allocate processes. In cooperative

algorithms, all nodes are responsible for making the decision of scheduling and

cooperating to achieve a better performance, each node in the system will use

the shared information to make the decision of using its OwWn 1esources; but in

non-cooperative algorithms, each node represents itself independently in DM of

how to use its resources without affecting the rest of the system.

7) Process migration: it determines when to push some load from a busy node to an

idle node in order to improve the system performance. These algorithms can

make the decision of process execution locally or remotely during the execution.

8) Resource utilization: it consists of algorithms that are able to use the resources

automatically, and hence moving the system from overloaded state to an under

All Rights Reserved - Library of University of Jordan

loaded state efficiently.

10

1.3. Thesis Organization

The rest of this thesis is organized as follows: In chapter 2 related works will be

presented, our work will be introduced in chapter 3. Simulation environment and the

related results taken from the simulation will be presented and evaluated in chapter 4.

Chapter 5 gives the conclusions and suggests the future work.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

11

2. Background and Literature Review

2.1 Introduction

The advancement in the communication, and the micro-electronic technologies; causes

the availability of efficient, and cost effective computer networks, and the availability of

fast, and inexpensive processors respectively. As a result; the price/performance ratio

makes it a trend to use€ set of loosely coupled interconnected processors to form a

distributed environment instead of using single high-speed processot.

In such environments (the DCSs) the probability of having one idle host (has no

pending tasks for execution) while other hosts are heavily loaded (has more jobs in its

CPU queue are waiting to be executed) is high as proposed by many researches. LB in

such environments is considered to be a challenge due to many ceasons, such as: a) the

autonomy of processors; b) the communication overhead in collecting state information,

¢) communication delays, and d) overhead in load redistribution.

The goal of LB is to improve the performance and get rid of load imbalance in the

system by cither transferring the load from the HL nodes to the LL nodes or by initially

assigning tasks fairly. Many works has been done for LB in the past years, it has been

investigated in different types of computing environments (loosely and tightly coupled

systems), using & variety of strategies and at different levels.

For example the algorithms of LB can be Static (the distribution of tasks among nodes

is made a priori based on jobs information) ot Dynamic (DM of jobs transferring 18

based on the current load state). The unit of transferring/redistribution can be the whole

job or individual processes (part of the job). The transfer policy can be sender initiated

(triggered by the HL hosts 10 gearch for LL hosts where tasks can be moved to) or

receiver initiated (triggered by the LL hosts to search for HL hosts where tasks can be

moved from).

All Righ ' '
ghts Reserved - Library of University of Jordan - Center of ThesisD |
eposit

12

The drawback of Static Load Balancing (SLB) that it assumes too much information

about the jobs is known a priori (even if they are known, huge computation is needed to

form a perfect schedule), make the researchers to prefer the Dynamic Load Balancing
(DLB), which make the decision of transferring jobs intelligently during its gxecution
as circumstances changes dynamically. Many papers study this category of LB, in this
chapter we will summary most of those closely related 10 our work.
Brief descriptions of the traditional DLB algorithms are given in (Hac, 1989). Watts, et
al. (1996), demonsiraies that a practical DLB approach s possible by using a
framework to implement the algorithm of the LB, called the concurrent graph library.
Chhabra, ef al. (2006), the quthors compare DLB, and SLB algorithms under the
qualitative parameters identified by them.
Cao, et al. (2000), design a simulator to simulate LB algorithms on a Local Area
Network (LAN) of DEC workstations environment, it uses a real workload distribution,
and executes the codes of the LB algorithms directly. They use their simulator to
compare four simple DLB algorithms.
Game theory is used to analyze and design DSs and SLB methods, by formulating the
LB methods in the DS as non-cooperative game between consumers, then transform 1t
to standard convex optimization problem using a function outtined by the authors,
(Nouri, and Parsa, 2009).
Broberg, ef al. (2005), are concerned with another metric of the DS performance, they
propose the Task Assignment based on Prioritizing Traffic Flows policy (TAPTE);
which focus on reducing the mean slow down metric, in addition to mean waiting time

satisfied by the LB policies. This policy differentiates the short traffic flows from the

large ones by using dual queues with “cutoffs” (the processing limit associated with

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

13

each host), and allow the short tasks to be executed quickly without waiting the large

tasks.

All Requests are arrived at the centralized dispatcher queue, the dispatcher will

distribute the requests at random in First-In-First-Out (FIFO) manner among the hosts

in the DS, Each host except the first one has two queues; the Ordinary queue (0Q),

which receives the requests directly from the di spatcher and the Restart queue (RQ), and

each of them is assigned a “cutoffs”.

Tasks that exceeds the cutoff of a given host, will be migrated to the next host RQ, and

will be executed from scratch, any work is done before migration is lost. Broberg, ef al.

(2006), The same authors of the previous scheme improve it into Task Assignment

based on Prioritizing Traffic Flows with Work-Conserving Migration (TAPTF-WC) to

decrease the penalty of the non-conserving migration found in other policies, which

follow the same method except that task migration is done in Work conserving manner

with negligible cost of state information migration.

So when the task exceeds the cutoffs of the host OQ, it will be migrated to with its state

information the next host RQ, but in this case any work done before migration will not

be lost, the TAPTF-WC will resume execution from the point the task stops before

migration, instead of restart executing it from scratch, this process is repeated until the

task can be executed to completion,

A new DLB scheme proposed by (Jain and Gupta, 2009), is based on the Centralized

approaches and the Interrupt service, they enhance the limitation of having one central

node in the centralized approaches by dividing it into smaller nodes. The system in this

scheme uses two types of nodes, the primary nodes (the main nodes) called PNs, and the

Supporting nodes (used to cope with the overload) obtained by splitting the central node

All Ri . .
Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

14

into smaller nodes called gNs. SNs are assigned some tasks and have a priority queue

for their processes.

When a PN 1s overloaded, then it will search for a lightly loaded PN within its cluster, if

t found such node the LB is obtained, otherwise the PN will search for a proper SN,

when finding it, the PN will interrupt the SN, then the SN will assign a priority 10 the

coming process, and will call the ISR (interrupt Service Routine). The ISR will compare

the priority of the currently executed process in the SN and the coming process, and will

take the decision of process execution.

A hierarchical approach that is based on two phases 10 collect information and make the

decision of LB is adopted. 2D load index (job attribute) is incorporated in DM, which is

called the job size, (Vaughan, 1995).

Two hierarchical DLB al gorithms are presented by (Barazandeh, and Mortazavi, 2009), |

the first algorithm called dynamic biasing; depend in distributing the load among the

nodes according to their weights. Weights allocated to nodes and groups based on their

current load state. The second algorithm is an enhancement {0 the RR algorithm; it

assigns tasks to the node with minimum load state :n a certain time slice. This algorithm

is called Minimum Load State Round Robin (MLSRR).

Simulations that perform routines and repetitive computations on a large data sets are

considered, especially when these iterations are irregular in their nature. Three

hierarchical Dynamic Loop Scheduling (DLS) approaches are proposed to maximize the

performance of such applications (Banicescu, ef al. 2009).

A traditional Decentralized D LB scheme for a homogeneous DS called state collection

algorithm, was addressed by (H.Ammar and, Su Deng, 1988). 1t assumes that each node

has a state record of all other nodes, initially; the values of the length of CPUs’ jobs

queues of all other nodes in the state record are zeros, each node sends its own state

All Ri . .
Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

15

when it sends jobs to the other nodes, the decision of Sending jobs depend on

gth of the sending node and the other nodes, if the

comparing the job’s queue len

number of local jobs exceeds the number of remote jobs, then a sending decision must

be taken to a randomly destination node if the state record is empty.

After further sending operations, the state record will be built by updating it each time a

new job is received with the sending node state, in this situation the decision is taken

according to the state record, by choosing 2 destination node with the minimum pumber

of jobs in its queue.

Periodic Symmetrically—lnitiated (PSI) LB algorithm is presented, which is a hybrid of

four LB mechanisms, namely, Random, Sender, Receiver, and Symmetric Algorithms.

(Benmohammed-Mahieddine, and Dew, 1994)

The behavior of the workload, including the process life time distribution, effects the

effectiveness of LB as proposed by the authors, which is used to derive a preemptive

migration policy. They reported that while Preemptive policies have a higher migration

cost, it performs better than non-preemptive policies which are less efficient. They use

the distribution of process life time to calculate the minimum age of the process for

migration, which improves the expected slowdown of the process, (Harchol-Balter, and

Downey, 1997).

Keqin Li, (1998), outlines a new scheme which there are many dispatchers, one on

ceives a separate task generation

each computer in the system, and each of them re

streams. The dispatchers assigns tasks 10 computers without any knowledge of the load

status information and without any coordination between them to balance the load

among all the machines, in such a way that whenever a task is assigned to a certain

All Ri . .
Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

16

computer, it will never be migrated to another computer, so 00 need to operate LB,

because it is achieved to gether with task assignment.

Heuristic methods for process migration and threshold update are used by (Xu, and

-passing multicomputer. Heuristic methods are also used to

Hwang, 1990) in message

balance the load in a Heterogeneous DS, the proposed algorithm works in two phases;

the Recursive Neighbor gearch Algorithm (RNS) in the first phase finds the most

k response time in its neighborhood, based on the

sujtable node that minimizes the tas
local information of the neighborhood.

abu-Search Algorithm (ATS), 18

The second phase, which is The Augmented T

triggered only when the system is out of an efficient Load Balance threshold because,

s results in additional overhead to the system. ATS is triggered to

operating it in all case

sible weaknesses and bottlenecks

more balance the system load, and to overcome the pos

of the RNS (Savvas, and Kechadi, 2004/b).

Irregular topologies are considered in many schemes to balance the load on them, these

schemes based on mapping them to a regular topology, such as, hyper-grid, tree, grid,

etc. for example a new Dynamic task scheduling mechanism for computing clusters 18

proposed, called the Positional Scan Task Scheduling (PSTS) that is based on the

STS algorithm is operated in

Positional Scan Load Balancing algorithm (PSLB). The P

two phases based on ““divide and conquer” principle.

In the first phase the network (possibly irregular) is mapped into a hyper-grid topology,

and then in the second phase the load will be re-distributed among the nodes by dividing

the hyper-grid (of dimension K for example) into hyper-grids of smaller dimension (K-

1).then the load balanced hyper-grids of dimension K-1 will be divided again, this

Al Ri . .
| Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

17

recursively continued until their dimension is

process of dividing the hyper-grids will be

equal to 1 (Savvas, and Kechadi, 2004/a).

In Akhtar, and Kechadi, (2006), the P2P computing system is mapped to a TreeP

topologyz, and then the workload will be redistributed among the peers by using the

PSLP algorithm based on their PS and their current loads.

propose two DLB schemes; The Dynamic Global

Two SLB approaches are reviewed to

Optimal ~ Scheme (DGOS), and Dynamic Non-CoOPerative scheme with

geneous DSs. DGOS tries to

Communication (NCOOPC) for multi-class jobs in hetero

minimize the expected response {ime of the whole system while the other scheme tries

on by minimizing the expected response time of

to provide a user optimal solutl

individual users, (Penmatsa, and Chronopoulos, 2007).

The heterogeneous DS is embedded onto a structure similar to B+ tree first, and then the

Enhanced PSTS (EPSTS) is applied to balance the load in the virtual structure, (Savvas,

and Kechadi, 2007).

Barbosa, and Moreira, (2009), improve the performance of a distributed memory

computer; in their proposed scheme, each job in their algorithm is described by a Direct

Acyclic Graph (DAG), and composed by a set of dependent working units. They

enhance the common approaches which assign the entire job to a single processing

node, by scheduling the working units’ of tasks from all tasks dynamically.

They use the batch strategy in their scheduling, which consider the new tasks and the

previously scheduled tasks, but waiting for service, Two algorithms are considered for

2 TreeP: it is a hierarchal topology based on 1-D space tessellations (iree based P2P architecture).

3 working units are considered the basic processing unit, instead of considering the task as basic element.

All Ri . .
Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

18

scheduling DAGs in their approach, namely the Heterogeneous Earliest-Finish Time

algorithm (HEFT) and the Heterogeneous Parallel Task Scheduler (HPTS).

Wang, et al. (2009), proposed an adaptive LB mechanism within the framework of
middieware. This mechanism is based on machine learning to predict the load
fluciuations, and react to them gradually, and uses the fuzzy logic to manage the replica.
Razzaque and Seon Hong (2006) proposed a D LB scheme applied on a homogeneous
DCS that is between the centralized and the distributed approaches, the performance
metric that is considered here is minimizing the communication cost evaluated by the
total number of messages exchanged in the communication network, and reduceing the
turnaround time of load execution compared with the common-used schemes.
The system of N nodes is divided into N different mutual overlapped subsets of size K,
(where K=VN approximately). by using Maekawa’s algorithm, such that each subsef
overlaps every other subset. Each node is assigned to a specific subset (called the
request set), and can request the state information from only the members of its request
set and exchange information with them, to update the system state table and make the
decision of scheduling to decide whether to execute the load locally or remotely, and
how much load can it send (to) or receive (from) the other nodes.

The solution of Incremental Weight migration 1WM) problem on arbitrary graphs is
used to derive a DLB algorithm. [WM uses the matching of a random set of edges to
balance the load of the system.(Ghosh, and Muthukrishnan, 1994}

Perez, (1997), present a method that uses the definition of High Performance Fortran

(HPF) to constitute the LB method into the run time, which uses the virtual processoré

as basic unit of migration in the LB mechanism. He controls the distribution of them

onto physical processors to balance the load of the system.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

19

Another way to cope the problem of LB ina DCS is proposed here. instead of using a
LB algorithms, the author tried to minimize the probability of LIB (Load ImBalance), to
ce the overhead needed to call a specific DLB algorithm, which forces the system

redu

to process migration, so he try 10 find an optimal load distribution to avoid using LB

mechanisms. The load are distributed in such a way, that the nodes with a higher PSs
takes more load than the nodes of the lower PSs.
He assumes that a DCS is composed of two Jevels, a probabilistic job dispatcher on the
first level, and a DLB algorithm on the second level, the probabilistic job dispatcher
adjusts the job arrival rate into a specific load distribution. The state of a node is
described by the current number of jobs in ils queue (either they arc waiting in the or
being executed). |
Two thresholds are used U, and L, to classify nodes’ states, whether it is HL, LL, or
Moderately Loaded (ML).If load imbalance occur (if having at least one under-loaded
node and one overloaded node in the DCS), a D LB algorithm in the second level will
take place to migrate some loads from the busy node to the idle node, (KEQIN LI,
2002).
Fedorov, and Chrisochoides, (2004), design and implement a run time system called
CLAM. It provides communication support for DLB of irregular adaptive applications.
Chen, ef al. (2008) investigate the contribution of the evolutionary Jearning algorithms
{0 solve the problem of LB, they consider the evolution as one of the basics methods to
solve problems by nature.
They study the effect of the following parameters in controlling the LB in a fully
connected DS; a) Increasing the network heterogeneity (including the PS of nodes, a-nd

Transmission speed), b) Network topology (star or ring), and c) {T1, TS, and TT}

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

20

parameters, the authors pointed out finding the appropriate values of all parameters is
needed in order to get an effective LB mechanism by using the evolutionary learning.

The impact of statistical properties of the network on the performance of LB is studied
by (Fukuda. ef al. 2007); they discuss the effectiveness of using the topological

information on the performance of the Multi-Agent System (MAS), in term of

coordination, because it provides the environmental information about the world for the

agents.
They investigate a deployment algorithm, that put each agent in the proper position in

the internet at design step. then they propose selection algorithm (to select the

appropriate agent 1o collaborate with) that needs only the degree and the scope

parameters, without global information about the network structure to balance the load

(i.e., achieve fairness) in the MAS.

A fair and DLB mechanism that considers the needs of both the user and the operator
(who is interested in the communication between the of the Origin-Destination (OD)
pairs) is presented, they define a utihty function of the OD pairs; whose arguments is
the average available bandwidth seen by each OD pair path, and maximize the sum of
all OD pairs, but the formulated optimization is not convex, they solve this problem by

using a Distributed al gorithm, (Larroca, and Rougier, 2009).

2.2 Related Work

Barazandeh, and Mortazavi, (2009), offer a dynamic algorithm for LB in DSs called
Dynamic Biasing Algorithm (DBA) that is based on Hierarchical structure. In this
algorithm, the workload s distributed among the nodes of the DS according to some
values called biases, which are determined based on the current load of nodes and

groups. The underlying DS has hicrarchical structure as shown 1n Figure 2.1.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

21

Clients

Figure 2.1: Underlying Distributed System

In this scheme the LB in the DS is executed in two phases; in the first phase a node
called Designated Representative (DR) or the Local Load Balancer (LLB) is responsible
the second phase the

for the local load balancing among nodes within the group. In

Global Load Balancer (GLB) balances the load among the groups. The LB operation is

centralized in both phases.

As the underlying structure shows the DS consist of a number of groups; each group has
its own DR that is connected to both, GLB and to its group nodes. The groups are not
connected to each other, means that when a task is allocated to a specific node in one of

the groups it must be processed in that group, and no replacement is permitted.

Each node sends its current load state (CPU Queue length) at a specific time ,called

state checking times, to its group’s DR, then the DR based on the information received
from nodes will do biasing, which is the process of giving weight or bias for each node,

and do local load balancing among nodes. The same process is repeated between the

LLBs which calculate their group load state and send it to the GLB, which in turn will

do biasing and load balancing among groups.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

22

Bias is calculated as follows: the nodes of one group are sorted according to their

d on the group load state and the number of tasks in the

current load state, and then base

LLB; the bias of each node will be some percent of these tasks. The LLB will distribute

tasks among nodes according to their biases. The GLB will calculate biases for each

mber of tasks that exist in GLB memory.

group according to group load state, and the nu

ad state and group load state to their DR and GLB,

Nodes and DRs send their current lo
respectively. This process is done in each checking state time without any request from

the DR and the GLB, because the pushing policy is used for exchanging and updating

information in the system. The intervals of doin

chosen carefully.

g biasing and state checking times are

All Ri . .
Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

23

3. Enhanced Dynamic Biasing Algorithm for Load Balancing in

Hierarchical Distributed Systems

3.1. Overview

In this chapter, we will explore in details the proposed scheme which hereinafter called
Enhanced Dynamic Biasing Algorithm (EDBA), the enhanced scheme aims to increase
the performance of the DS by increasing the throughput of the processed tasks, also in
decreasing the response time. Generally, it’s known that, the problem of finding optimal

solution of the Load Balancing is NP-complete.
The DS with hierarchical structure is introduced because of the following advantages:

» Provides a better management of the workload because the load balancing
among groups and nodes is done in a number of phases.

* Decreases the communication overhead among nodes because of using the
centralized policies of LB.

¢ Provides a better performan(;e for a large DS if it is compared with distributed
LB policies which incur a huge number of messages to exchange the load state
among nodes.

* Also in a large DS, messages from remote nodes will have significant
propagation delay which makes the arrived load state out of date.

* Ability to scale large DSs.

In the other hand, the dynamic LB algorithm is introduced, which made decisions of
distributing load among nodes intelligently based on the current load state of nodes that
changes dynamically during time. Although, it has complication in implementation and

higher communication overheads, it outperforms the static algorithms that are simple to

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

24

implement and have low communication overhead. Static algorithms distribute load
among nodes randomly and doesn’t use the current load states of nodes. Exchanging

load state messages among nodes in static algorithms is no longer needed.

Two improvements are made to the original algorithm (DBA), the first improvement is
the EDBA with CPU Utilization (EDBA-CPU-U), which increases the system
performance. The other improvement is EDBA with process migration (EDBA-PM),

which provides a better performance compared with DBA.

In EDBA-CPU-U a new parameter is used to calculate the biases of nodes and groups,
this parameter is the CPU Utilization (CPU-U) rate of each node. It’s known that low
CPU-U means the node is idle in most of the time, while high CPU-U means the node is
working properly and it is busy in processing tasks most of the time. our aim is to
minimize nodes idling time and make them busy most of the time in order to increase

the performance of the system, in terms of throughput and accordingly response time.

In EDBA-PM, the process migration policy is used in the DS when a node load is
higher than a specific threshold, then some of its load will be transferred to another
lightly loaded node. This enhancement increases the system performance very good
when task arrival times are variable, and unpredictable compared with the original

algorithm.
3.2. The System Model

The underlying structure of the DS is hierarchical, and the DS could be homogeneous or
heterogeneous. In homogeneous DS all nodes have the same service rate and memory;
while in the heterogeneous DS, the nodes have completely different memory and

service rate.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

25

‘The DS has a tree structure where the system consists of two groups, each group has
eight nodes, and the system has three clients that generates tasks and send them to the
system. The architecture of the system is as follows: the LLBs are connected to the
GLB, and the nodes are connected only to their LLBs. Nodes are not connected to each
other; they can communicate with each other only by their LLB (this communication
among nodes 1s needed only in the EDBA-PM). All groups are connected to the GLB

by their LLB, and there is no connection between groups.

The groups that compose the desired DS have close communication property, where the
nodes of each group communicate with the nodes of the same group and can’t
communicate with the nodes of the other group. As shown in figure 3.1 there are no

communication links among the nodes of different groups. They can communicate with

their LLB only.

The Load Balancing is operated in two levels as in the original algorithm, the LLB
balances the load among the nodes of its groups, then the GLB balances the load among
the groups, but here in the presented scheme the LLBs and GLB do load balancing in a
different way from the DBA, in such a way, that it provides a better system

performance. The figure 3.1 shows the DS considered in the proposed scheme.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

26

Clients

Figure 3.1: Underlying Distributed System Structure

3.3. The Proposed scheme Assumptions

This study concerns about homogeneous and hetero

geneous DSs of Hierarchical
structure with these assumptions:

* Groups are already formed,

* This study doesn’t consider how nodes join or leave groups. *

All nodes have the same memory and the same service rate in

homogeneous system.

All nodes have completely different memory and different service rate in

heterogeneous system.

¢ The communication links have some delay,

* For intcrested readers, groups for

ming can be done in many ways, {Ahn, er af. 2007), (Barazandch, ef af.
2009), and (Huang, er af, 2003).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

27

3.4. Determining Suitable time intervals

The process of calculating biases is called biasing; this process is done periodically in
time interval called biasing interval. Biasing interval must be chosen efficiently in such
a way, it must not be too high which increases the response time and makes the
algorithm not efficient. In the other hand, low interval will increase the response time
because several zero biases will be made and the tasks will remain in the LLBs and in

the GLB, so this interval must be chosen very carefully.

In this scheme there are several choices for this interval, we evaluate the performance of
the system with each one of the previous choices; then we select the time interval that

gives the best performing system.

As in the original algorithm pushing policy is used to exchange information among
nodes and LLBs, and between the LLBs and the GLB; meaning that the nodes send
their current load state information in each checking state time without any useless
request from the LLBs. The LLB will send the group current load state to the GLB

according to the received information without any request from the GLB.

Pushing policy increases the system performance and decreases the communication

overhead, because it omits the useless request messages of the current load state.

The state checking time must be chosen very carefully, because high interval makes the
incoming information about the load state out-of-date, as a result; the decision of the
load balancing will be invalid. Low interval will increase the number of exchanged
messages which increases the communication overhead and degrade the system

performance.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

28

In the proposed scheme many values are put as state checking time, we evaluate the
system performance with all of them, and then we choose the time interval that gives

the best system performance.
3.5. Enhanced Dynamic Biasing Algorithm with CPU Utilization (EDBA-CPU-U)

In this scheme a new load index is used to calculate the nodes biases, in order to
enhance the system performance; this index is the CPU-U rate of each node. So, instead
of sending the CPU queue length periodically to the LLB as in the original algorithm,
the node will also calculate its CPU-U rate and send it accompanied by its queue length

in each state checking time.

The aim of this enhancement is to keep all nodes having high CPU-U at all times, and
attempt to balance the load in the DS by distributing tasks evenly among the nodes;
each one will have some percent of all tasks based on its current load state and CPU-U
rate. Maintaining high processor utilization in nodes can be achieved by keeping the

nodes busy at all times and minimizing their idling times.

According to this scheme; the node that has lower CPU-U rate will receive a larger
share of tasks than the other nodes; making it busy for longer time in processing the

incoming tasks, and increasing the system performance accordingly.
3.5.1. Mcthodology
The EDBA-CPU-U algorithm involves the following phases:

1) Load Evaluation: each node computes its current load state in percentage unit,

which includes its CPU queue length, and its CPU-U rate as in Equ(1):

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

29

Node-load-state= (CPU-Q-length + CPU-U) / 2

Equation (1): Load Evaluation

Where CPU queue length and the CPU-U rate is calculated as follows:

2)

3

CPU queue length: refers to the percentage of the number of tasks that are in the
node’s processor queue, waiting to be executed by the CPU to the whole queue
size including the frec size and the occupied size (where queue size is measured
by the number of tasks that it can save).

CPU-U rate: the percentage of the busy time of the processor to the whole
processor time, for example if the processor starts working at time t1, then it
becomes busy at time t2, and finishes working or becomes idle at time t3; then

the CPU-U rate is calculated as follows:

CPU-U = [(13-t2) (13-t1)] * 100%

State Information exchange policy: each node periodically sends its current load
state to its LLB, and each LLB sends its current group state to the GLB. This
interval of sending load state called state checking time, the group state is

calculated as in Equ(2):

Group-load-state= ¥ nodes-load-state / num-nodes.

Equation (2): State Information exchange policy

Biases Calculation: each LLB calculate its group nodes’ biases based on the
received information about the current load state from nodes, and each GLB

calculates groups’ biases based on the received information of the current group

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

30

state from the LLBs, the biases of nodes calculation is done as in equ(3); and the

biases of the groups are calculated in the same way.

Bias [node-i] =100-node-load-state [node-i]
Sum =} Bias-all-nodes
Bias [node-1] = (Bias [node-1]/sum)* 100

Bias [node-i] = (Bias [node-i]/100)*LLB-Q-Length

Equation (3); Biases Calculation

4) Task Distribution: tasks are distributed among groups and nodes according to
their biases, based on the number of tasks in the GLB and groups biases, each
group will receive a specific percent of the tasks, then according to the number
of tasks received from the GLB and nodes biases; each LLB will distribute these

tasks among nodes, each with some share of the tasks.

3.6. Enhanced Dynamic Biasing Algorithm with Proccess Migration (EDBA-PM)

In this scheme the process migration policy is used to enhance the system performance
by transferring some load from the heavily loaded nodes to the lightly loaded nodes, so
all nodes will have at least one task to process at all times. This enhancement increases
the system performance with respect to throughput, and response time parameters;

especially when the task arrival rate is variable and unpredictable.

Task migration is typically justified by the assumption that the migrated task will be
processed faster on the resources on the other node, this assumption based on the load

measure comparison between the source and the destination node.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

31

3.6.1. Methodology 684770

The EDBA-PM algorithm involves the following phases:

1} Load Evaluation: each node computes its current load state, which includes its

CPU queue length as shown in Equ(4):

Node-load-state= CPU-Q-length

Equation (4): Load Evaluation

2) Each node will check if its current load is greater than some threshold T, and

take the decision of task migration as Equ(5):

If (Node-load-state >=T)
Then: Migrate Task (}) to LLB;
Else

Don’t migrate any task;

Equation (5): Decision of process migration

3) State Information exchange policy: each node periodically sends its current load
state to its LLB, and each LLB sends its current group state to the GLB. This
interval of sending load state called state checking time, the group state is

calculated as Equ(6):

Group-load-state= } nodes-load-state / num-nodes.

Equation (6): State Information exchange policy

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

32

4) Biases Calculation: each LLB calculate its group nodes’ biases based on the

received information about the current load state from nodes, and each GLB
calculates groups’ biases based on the received information of the current group
state from the LLBs, the biases of nodes calculation is done as follows; and the

biases of the groups are calculated in the same way.

Bias [node-1] =100-node-load-state [node-i]

Sum =3} Bias-all-nodes

Bias [node-i] = (Bias [node-i]/sum)*100

Bias [node-i] = (Bias [node-1]/100)*LLB-Q-Length

Equation (7): Biases Calculation

3.6.2 Process migration policy used in the Enhanced scheme

The process migration policy used in the enhanced algorithm composed of three phases

to make the decision of task migration, these phases are described below:

D

2)

When to initiate task migration: this phase determine whether the task should be
executed locally or remotely. in this phase at each task arrival the node checks if
its current load is greater than some threshold T, if the condition is satisfied then
this node is heavily loaded, and won’t insert this task to its CPU queue and will
migrate it, otherwise the task will be inserted to its queue and will wait to be
serviced.

The where phase: it is concerned with which node will be selected as a

destination node to execute the transferred task. This phase is done totally in the

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

33

LLBs. When the node is heavily loaded; it will migrate some tasks to its LLB,
and then the LLB will choose the destination node that will execute this task
according to nodes biases.

3) Which phase: it determines which task will be selected to be migrated to the
LLB when the decision of task transferring is made. We have decided to migrate
the older tasks, because these tasks have the probability to live for longer time
enough for amortizing the cost of process migration, (Campos, and Scherson,
2000)

Two observations must be made to the first phase. First, each node will check the
previous condition at different time interval, it is not necessary that all nodes will
receive tasks at the same time. Second, the threshold is not constant and changes
adaptively according to the current load state of the node and may change from one

node to another.

The transfer threshold which determine when to consider the node as heavily loaded or
lightly loaded must be chosen efficiently; a node with high T value indicates that it will
keep most of the load assigned to it and try to execute it locally instead of push it to
other nodes, while low T value indicate that the node will push most of its load to the

other nodes; in both cases the performance of the system will degrade.

In scheme we choose a suitable T value that makes the system performs efficiently, this
T is adaptive and differ from one node to another, and it is different from one simulation

case to another,

The process migration policy used here is dynamic, distributed, and non-preemptive.,
Dynamic because it satisfies the changing requirement and make the decision of task

migration depending on the current load state of nodes, Distributed, because the

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

34

decision of PM is made locally by each node regardless of the other nodes, and non-

preemptive, because tasks are migrated before executing them.

3.7. Simulation Cases

The presented scheme studies Dynamic Load Balancing in Distributed System with
twelve different cases, The DLB are studied under homogeneous and heterogeneous
DS; with homogeneous DS all nodes have the same memory and service rate, while in
the heterogeneous DS all nodes have completely different memory and different service

rate.

At both DSs, three algorithms are evaluated under constant arrival rate of tasks in which
the time between the first arrived task and the next one is fixed and known, and under
variable arrival rate of tasks, in which the tasks inter-arrival time is variable and
unpredictable. The exponential distribution with mean equal (0.5) is used to represent

variable inter-arrival time.

The three algorithms are the original algorithm, Dynamic Biasing Algorithm, the
Enhanced Dynamic Biasing Algorithm with CPU-U, and Enhanced Dynamic Biasing

Algorithm with Process Migration. These cases are summarized in Figure 3.2.

‘ [3] l
33
|i heterngeneouy ;
constatnt arrival rn!c vnnahle arrival rate constatnt arrivul vnriable arrival
of tasks ol hu. \ mte of tasks rate of tasks

. F
EDBA- | [EDBA- FDBA EDBA | EDBA— EDBA- EDBA.| {EDBA.
. “""1 ’cpu u] LI'M j [&,D“" l CPU—U PM | _] [CPUL P l DeA] CPUU] [

Figure 3.2.Simulation cases

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

35

4. Results and Evaluation
4.1. Introduction
In this chapter, we will present the simulation process we followed in details. To start
with, an overview of the simulator used in our experiments will be given. Next,
different scenarios will be discussed along with their simulation setup parameters. To
evaluate the performance of our methods, certain metrics should be chosen to give us
the right indication about our goals, these metrics will be explored. Finally, simulation

results along with their analysis will be given.
4.2. The Simulator

Our schemes EDBA-CPU-U and EDBA-PM have been simulated using network

simulator called OPNET.Modeler.14.0.A.PL3- Education Version.

OPNET Modeler accelerates the Research &Development of process for analyzing and
designing communication networks, devices, protocols, and applications. Users can
analyze simulated networks to compare the impact of different technology designs on
end-to-end behavior. Modeler incorporates a broad suite of protocols, and technologies,
and includes a development environment to enable modeling of all network types and

technologies including: VolIP, TCP, OSPFv3, MPLS, IPv6, and Others. [Source:

http://www.opnet.com/solutiong/network_rd/modeler.htm]].

We ran the simulator on a computer that has the following capabilities: Intel(R)
Core(TM) 2 Duo CPU, T7500 @ 2.20GHz (2 CPUs) Processor, 3GB of RAM Memory,

and 160 GB Hard Disk.

The enhanced algorithm is programmed in the node level of the simulator, where each
node has a process model that is composed of Finite State Machine (FSM). The FSM

consists of many states and transitions that perform the conditions among states, and the

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

36

code inside each state represents the serial events of the algorithm. Figure 4.1, 4.2, and

4.3 represents the node level of EDBA-CPU-U, the process model of the LLB, and the

code of one state of the FSM, respectively.

FEﬁndﬂhd!L thais_dyriaenic_binsing omo_cpU_UH_pAper M el s

e td !mrfm mm \MMM Hep

SOE—— ————rmwraraas - = o ar remAn AnanAn R 1 — = —RATIANOREL ' C S TR .

ﬂ@ﬂﬁﬁﬂf ‘“mﬂﬁﬁﬂﬁﬁ

a Froo EITTTIRII a0 T SRR, v T T e

e

I:«"lid_;ﬂ" ium_geomdkaiou;dhs_méje ol e e,

Figure 4.1 The Node level of EDBA-CPU-U Algorithm.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

37

T S T
E Process Model: Thesis_{LLB_ paper ~ JRT=sie i = atdM PR O e |
File Edlt Interfaces FSM Code Blocks Compile Windows Help

PIEFF RN

e rae w[m;nn'@ B @ oo

R AN u.mwi&k-iil H; e!.smw;t'w e o, w.:,sw%m‘}t'&',l' i Moe-do-ransige o
[T T L e ey b e it gl

Figure 4.2 The Process Model of LLB.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

38

F-—F_W
rﬁ'ﬂm&_llﬂ_paplr:miui:inlir[ms s M Aot Bt | et w o
Fia Et COpiiors

T ARe! L]

1 P> acquire the areiving packel ' Bl

1 /* multiple arriving streams are supported. */ 'a'
3 ! Q
4 pkptr =op_pk_get (op_intrpt_strm ()); {

$ Q
6 /* atlempt to enqueue the packet af tail of subgueuc 0 */ 1 %
H !

3 i {op_subg_pk_inseri (B, pkptr, OPC_QPOS_TAIL) 1= OPC_QINS_OK) j |E
s | u=
10 * the inserton failed (due to to a full queue) deatlocate the packet. */ o
1)
12 op_pk_desiroy {pkptr); "8'
13 ' O
14 /*set flag indicating insertion fail */ |
15 [*this flag is used to determine */

16 /* transition ou of this state

17 insert ok=0;

19}

19 else

20 ¢

21 /* insertien was successful 4

22 insert_ok=1; -

3 all pht

Mo} _

M s d

e e IR L RN T TR * b pAAN AT Y ALAE K ARFE TSN LA Ll Ll 1 SN . SdmaERAT L Ll TERMM il madrt
' ‘M‘t "{t‘ﬂ
1 Al L .|%.-\I-kl--- CIRRTIRE FUEEIURRT LR R B N P N TRy [I TT YT REPRITY RS ST M N L LI ETFEIr o 1} 4 -

Figure 4.3 the code of the arrival state of the FSM.

4.3, Scenarios of the Simulation

We divided the simulation study samples into two groups; this helped us to trace
different scenarios and conditions. The first group of simulations done for homogeneous

DSs, the other group tested heterogeneous DSs. Inside each group we divide the

All Rights Reserved - Library of University of Jordan

simulations depending on the arrival rate of tasks whether it’s constant or variable.

These simulation cases are summarized in Figure 3.1 in the previous chapter.

39

4.4, Performance Metrics

As explained in the previous chapter the value of the state checking time, in which the
node calculate its current load state, and the biasing interval in which the LLBs and the
GLB calculates the biases of the nodes and groups, respectively; is very important,
because it affects the system performance very intensively. As said before, these values
are chosen based on the simulator results; we try a number of values and then we
choose the value that gives the best performance of the system. The chosen values for

these intervals are shown in Table 4.1

Table 4.1: Determining Simulation Intervals

Type of Element State Checking Time Biasing Interval
Node 20 seconds No-Biasing
LLB 22 seconds 25 seconds
GLB No-State-Check 15 seconds

4.5. Results and Discussions

To compare the proposed schemes with the original one, we develop several simulation
cases for different situations. To compare between two algorithms, we calculated the

percentage difference as in Equ (9):

|Average (Algorithm2)- Average (Algorithm1)|
Q, i = 0,
%Difference Average Algorithm1 * 100%

Equation {9): Percentage Difference

Where: algorithm1 is the original algorithm, and algorithm2 is the proposed algorithm.

The DBA algorithm and the proposed algorithms are compared in terms of throughput,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

40

and response time. Throughput metric is the number of completed tasks per unit time,
and the response time is the time beiween submission of a specific task in the queue and

the first response to that task.

4.5.1. Homogeneous Distributed Systems

We start by simulating the homogeneous DSs, in which all nodes in all groups have the
same service rate and same memory capacity. The service rate of the nodes is set to 70
bit/second, and 50 bit/second to the LLBs and the GLB. The communications links that
communicate nodes and groups have some delay. The simulation time is set to one

hour.

4.5.1.1 Constant Arrival Rate of Tasks

In this simulation case, the task arrival rate is constant, means that the number of the
arrived task is know, and the time between two consecutive tasks is constant. As shown
in Figure 3.1, which shows the underlying Distributed System structure, there are three
task generators, we choose a constant generating rate for all of them, each one can
generate from zero to ten tasks a second. The drop rate is not considered when the

arrival rate is constant, because it is almost zero.

4.5.1.1.1 EDBA-CPU-U

The CPU-U rate of the nodes 1s calculated each time the node checks its current load
state; it adds it to the CPU queue length then sends it to its LLB. Figure 4.4 shows the

comparison between the DBA and the EDBA-CPU-U in terms of response time.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

41

90
80
o 70 L
£ I
E 60
% s L
i — . —
2 N s £ DBA-CPU-U
g % X e DBA
€ 30
10
0
0 100 200 300
Number of Tasks

Figure.4.4 Response time with varying number of tasks for EDBA-CPU-U with constant arrival rate of
tasks in homogeneous DSs,

As it can be seen in figure 4.4 the EDBA-CPU-U outperforms the DBA in terms of
response time by 45% approximately. The DBA and the EDBA-CPU-U are compared
with varying number of tasks. The enhanced algorithm decreases the response time very
much because, when the CPU utilization rate is considered to distribute tasks among
nodes; the idling time of nodes will decrease and the response time will be improved as

a result.

In the previous case the number of tasks that are received by each node equal 250 tasks
in average, and the total number of tasks that are received by all nodes equal 18,000
tasks approximately. The number of processors that are used to execute the tasks equal
sixteen processors. Figure 4.5 shows the comparison between the two algorithms but

with varying number of processors.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

42

Response Time

70

60

50

40

30

20

10

S

-
y T4 o~ = EDBA-CPU-U
/
5 10 15 20
Number of processors

Figure 4.5 Response time with varying number of processors for EDBA-CPU-U with constant arrival rate

The previous figure compares between the DBA and the EDBA-CPU-U in terms of

response time, where the arrival rate of tasks to the nodes are constant and with varying

of tasks in homogeneous DSs,

number of processors. The numbers of processors used are sixteen processors.

We can note that the proposed algorithm increases the performance of the system in
terms of response time by 31.07%. This result is expected because of using the CPU-

utilization as load index in addition to the queue length to determine the node load state

will increase the system performance and will gives better results.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

43

4.5.1.1.2 EDBA-PM

60

50

40

30

= == DBA

20

EDBA-PM

Throughput

50 100 150 200 250 300

&

Number of Tasks

Figure 4.6 Throughput with varying number of tasks for EDBA-PM with constant arrival rate of tasks in

homogeneous DSs.

The previous figure shows the difference of the two algorithms performance with
respect to throughput factor. It is clear that the proposed algorithm has a better
performance than the DBA algorithm by 15.5% approximately. This percentage is not
large because, as we said that the EDBA-PM enhances the system performance by a

larger percentage when having variable arrival rate of tasks.

But in general the EDBA-PM increases the number of processed tasks because it tries to
balance the load among the nodes in the DS, and make them have the same number of
tasks approximately by using the process migration policy. This policy enhances the
system performance by transferring some load from the heavily loaded nodes to the

lightly loaded nodes.

In the previous case the number of tasks that are received by each node equal 250 tasks

in average, and the total number of tasks that are received by all nodes equal 18,000

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

44

tasks approximately. The number of processors that are used to execute the tasks equal

sixteen processors.

Figure 4.7 describes the difference in the two algorithms performance with varying
number of processors, as the graph depicts the EDBA-PM outperforms the DBA in

terms of throughput factor by 24.85%.

an
[<>]

un
Lea}

£
D

-
a 36
: h
o Ty A
g 20 I\ /_/ _—=== EDBA-PM
a /
e i S mme ,
-5 ? 5 10 15 20
10

Number of processors

Figure 4,7 Throughput with varying number of processors for EDBA-PM with constant arrival rate of

tasks in homogeneous DSs.

4.5.1.2 Variable Arrival Rate of Tasks

In this simulation case, the task arrival rate is not fixed, means that the number of the
arrived tasks are not known, and the time between two consecutive tasks changes
variably. So the number of tasks that will arrive to the system is larger in this case. As
shown in Figure 3.1, which shows the underlying Distributed System structure, there are
three task generators, we choose a variable generating rate for all of them; each one can

generate a number of tasks that increases exponentially.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

45

In this simulation case each node receives 300 tasks in average and the total number of
tasks is 20000tasks. The number of processors used to simulate this case is 16

processors.
4.5.1.2.1 EDBA-CPU-U

When evaluating the algorithms, we notice that the EDBA-CPU-U enhances the

performance of the system very well in terms of response time; this result is given in

Figure4.8, and 4.9.

The result that is shown in the previous figures is expected because the EDBA-CPU-U
behaves as in the system when the arrival rate of tasks is constant. It increases the
system performance by 62.9% compared with DBA in varying number of tasks case,

and by 49.57% in varying number of processors case.

50
o 40
E
Y 30
c
8 20 EDBA-CPU-U
a
€ 10 ‘f__“__ . - su we DBA
'.—
o
0 100 200 300
number of tasks

Figure 4.8 Response time with varying number of tasks for EDBA-CPU-Uwith variable arrival rate of
tasks in homogeneous DSs.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

46
2050
1504
-]
£
= 300
2 s £ BA-CPU-U
Q
o — BA
a
o
-5 &% 5 10 15 20
50
Number of Processors

Figure 4.9 Response time with varying number of processors for EDBA-CPU-U with variable arrival rate

of tasks in homogeneous DSs,

4.5.1.2.2 EDBA-PM

The proposed algorithm enhances the throughput of the system very well, especially
when it is heavily loaded. It uses a threshold that changes adaptively according to the
system conditions in order to enhance the performance, this algorithm helps in
balancing the load by moving some tasks from the heavily loaded nodes to the lightly

loaded nodes. Figure 4.10 and 4.11 shows the result.

60
50
- Y o
— A
_ e P T
pa |
T) PRI
3 ' M— -~ == EDBA-PM
] il
= 20
iE ' DBA
10 i
Q
10 0 100 200 300
Number of tasks

Figure 4.10 Throughput with varying number of tasks for EDBA-PM with constant arrivat rate of tasks in
homogeneous DSs.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

40

30

== = EDBA-PM

20 DBA

Throughput

10

0

5 10 15 20

Number Of Processors

10 1

Figure 4.11 Throughput with varying number of tasks for EDBA-PM with variable arrival rate of tasks in
homogeneous DSs,

As the previous figures illustrate the number of processed tasks increases when using
EDBA-PM, because this algorithm helps in distributing tasks among nodes evenly, and
achieving a better performance by transferring the tasks from the busy nodes to the idle

or lightly loaded nodes and enforce them to execute more tasks.

The EDBA-PM increases the system throughput by 17.2% with varying number of tasks

case and increases the same metric by 22.89% with varying number of processors case.

4.5.2. Heterogeneous Distributed Systems

All nodes in all groups have different service rate and different memory capacity. The
communications links that communicate nodes and groups have some delay. The
simulation time is set to one hour. Two cases are considered as in the homogeneous
system, the first case have constant arrival rate of tasks, and the other case with variable

arrival rate of tasks.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

48
4.5.2.1. Constant Arrival Rate of Tasks

In this simulation case each node will receive 280 tasks in average, and the total number
of tasks is 18000 tasks. The total number of processors used to simulate the algorithm is

16 processors. The service rate of nodes ranges from 25 bits/second to 300 bit/second.

4.5.2.1.1 EDBA-CPU-U

Figure 4.12 and 4.13 depicts the performance of the EDBA-CPU-U when the arrival
rate of tasks is constant. In the figure the performance of the two algorithms is
stmulated with varying number of tasks, and in the second graph the performance is

considered when having varying number of processors.

50
45
40
35 "
30
25 5

20 e
15:{:[
10 F

0 100 200 300

o sanars DBA

Response Time

EDBA-CPU-U

number of tasks

Figure 4.12 Response Time with varying number of tasks for EDBA-CPU-U with constant arrival rate of
tasks in heterogeneous DS

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

45

EDBA-CPU-U

Response Time

- = DBA

e

-3 Y 5 10 15 20

number of processors

Figure 4.13 Response Time with varying number of procesors for EDBA-CPU-U with constant arrival
rate of tasks in heterogeneous DS

As presented in the previous figure, the EDBA-CPU-U achieves better performance if
response time metric is considered. This result is expected and we can conclude that the
proposed algorithm can work properly with both homogeneous and heterogeneous

distributed systems.

EDBA-CPU-U enhances the performance of the system by 34.6% with varying number

of tasks, and by 29.49% with varying number of processors.

4.5.2.1.2 EDBA-PM

The next two figures 4.14 and 4.15 compares between the EDBA-CPU-U and DBA

algorithms in terms of throughput factors,

All Ri g'hts Reserved - Library of University of Jordan - Center of Thesis Deposit

S0

&0
1
50 M-
Y, By etuhemtfy, o
S MO TR ¢ Frengona
40 E g
- M
2 30 (e o
gn +esvers EDBA-PM
o
£ 20 J— -
=
10
0
10 0] S0 100 150 200 250 300
number of tasks

Figure 4,14 Throughput with varying number of tasks for EDBA-PM with constant arrival rate of tasks
in heterogeneous DS

60

50 pet———

40 12 " ="
Fel
2 {
2 Y A
L
e - wa EDBA-PM
£ 2 |

/ DBA
10
0
0 5 10 15 20

number of Processors

Figure 4.15 Throughput with varying number of processors for EDBA-PM with constant arrival rate of
tasks in heterogeneous DS

The EDBA-PM performs as in the homogeneous system. It improves the system
performance by increasing the number of processed tasks in the system. The percentage
difference between the two algorithms is 28.5% when the case is having varying

number of tasks and 30.02% with varying number of processors.

- Center of Thesis Deposit

All Rights Reserved - Library of University of Jordan

51

4,5,2.2, Variable Arrival Rate of Tasks

Each node in this case receives 300 tasks in average and the total number of tasks is

32000 tasks. The total number of processors is 16.

4.5.2.2.1 EDBA-CPU-U

Figure 4.16 and 4.17 evaluate the performance of the EDBA-CPU-U and DBA

algorithm in terms of response time factor.

70
L.
60 2
:g’ ” :“ .-"‘“'"*.r
40— e
§ H M\\...,.‘.w»'ﬁ
% 30 5- / /w
2 ;
& 20 h
10
0
0 200 400 600 800
Number of Tasks

EDBA-CPU-U

Figure 4.16 Response time with varying number of processors for EDBA-CPU-U with variable arrival

rate of tasks in heterogeneous DS

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

52

Response Time
Lr e
i
|
r
[

st £ DB A-CPU-U
= == DBA

e

0 5 10 15

Number of Processors

20

Figure 4.17 Response time with varying number of processors for EDBA-CPU-U with variable arrival

rate of tasks in heterogeneous DS

The response time is smaller in EDBA-CPU than in the DBA, which gives an efficient

system performance. It performs as in the homogeneous system and enhances the

system performance in both cases.

In the first comparison when having variable number of tasks the EDBA-CPU-U

enhances the performance of the system by 32% approximately and by 36% in the

second case.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

53

4.5.2.2.2 EDBA-PM

Figure 4.18 and 4.19 shows the throughput metric of the DBA and the EDBA-PM; we
can notice that the enhanced scheme gives a better result than the original scheme. It

increases the performance by 34.24% in the first case and by 37%in the second case.

45
40
35
30
25
20
15
10

#
>
;'
v
A
4
‘.r
y
0‘1

LT
LTS EY Sxt-‘.
E

Throughput

....... EDBA-PM

-5 200 400 60G————800

Number of tasks

Figure 4.18 Throughput with varying number of tasks for EDBA-PM with variable arrival rate of tasks in
heterogencous DS

—-l-'."‘-‘"""'i-q-——-d--"'""

=== EDBA-PM

Throughput

DBA

5 @ 5 10 15 20
Number of Tasks

Figure 4.19 Throughput with varying number of processors for EDBA-PM with variable arrival rate of
tasks in heterogeneous DS

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

54

4.6 Results Summary

In this section we calculate the percentage difference between the proposed schemes

and the original algorithm to conclude how much it improves the system performance.

In homogeneous system with constant arrival rate of tasks the EDBA-CPU-U decreases
the response time by 45% with varying number of tasks, and by 31.07% with varying

number of processors compared by DBA. And with variable arrival rate of tasks it

decreases the response time by 62.9% with varying number of tasks, and by 49,579

with varying number of processors.

In heterogeneous system with constant arrival rate of tasks the EDBA-CPU-U decreases
the response time by 34.6% with varying number of tasks,'and by 29.4% with varying
number of processors. In variable arrival rate of tasks it decreases the response time by

32% with varying number of tasks, and by 36% with varying number of processor.

The EDBA-PM increases the throughput by 15.5% with varying number of tasks in

homogeneous system with variable arrival rate of tasks, and by 24.85% with varying

number of processors compared by DBA. In variable arrival rate of tasks it increases the

throughput by 22.89% with varying number of tasks, and increases the throughput by

17.2% with varying number of processors,

The EDBA-PM increases the throughput by 28.5% with varying number of tasks in

homogeneous system with variable arrival rate of tasks, and by 30.02% with varying
number of processors compared by DBA. In variable arrival rate of tasks it increases the

throughput by 34.24% with varying number of tasks, and increases the throughput by

37% with varying number of processors.

All Rights Reserved - Library of University of Jordan - Center of Th

55

5. Conclusions and Future Works

5.1. Conclusions
In this work, we have proposed two new schemes EDBA-CPU-U, and EDBA-PM

where we aim in it to improve the system performance by increasing the throughput,

and at same time decreasing the response time.

In the EDBA-CPU-U a new load index is used to calculate biases that are used to
distribute the load among nodes. This index ts the CPU utilization rate, which increases
the system performance because it helps in decreasing the idling time of nodes and,

makes them busy in most of the time. As aresult the nodes will process more tasks and

the throughput will increase,

In the EDBA-PM the process migration policy is used to enhance the system
performance by transferring some load from the nodes that is not able to exccute the
tasks to another node. The source node, the destination node, and the transferred task
are determined according to some policy. According to this policy, nodes will have the

same load state approximately, and increasing the system performance as a result.

The two proposed schemes are evaluated with twelve cases in order to achieve our goal.
In homogeneous system with constant arrival rate of tasks the EDBA-CPU-U decreases
the response time by 45% with varying number of tasks, and by 31.07% with varying
number of processors compared by DBA. And with variable arrival rate of tasks it

decreases the response time by 62.9% with varying number of tasks, and by 49.57%

with varying number of processors.

In heterogeneous system with constant arrival rate of tasks the EDBA-CPU-U decreases

the response time by 34.6% with varying number of tasks, and by 29.4% with varying

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

56

number of processors. In variable arrival rate of tasks it decreases the response time by

32% with varying number of tasks, and by 36% with varying number of processor.

The EDBA-PM increases the throughput by 15.5% with varying number of tasks in

homogeneous system with variable arrival rate of tasks, and by 24.85% with varying

number of processors compared by DBA. In variable arriva rate of tasks it increases the

throughput by 22.89% with varying number of tasks, and increases the throughput by

17.2% with varying number of processors,

The EDBA-PM increases the throughput by 28.5% with varying number of tasks in
homogeneous system with variable arrival rate of tasks, and by 30.02% with varying
number of processors compared by DBA. In variable arrival rate of tasks it increases the

throughput by 34.24% with varying number of tasks, and increases the throughput by

37% with varying number of processors.

5.2 Future Works

In this study all tasks that generated by the client and arrived to the nodes have the same

size, different tasks sizes could be taken onto consideration in any futyre investigation,
Different sizes of tasks may affect the performance of the System, so future work may
consider this investigation to evaluate how different sizes of Jobs affect the system. The

comparison of our methods with other new methods could also be considered ag a future

work,

- Center of Thesis Deposit

All Rights Reserved - Library of University of Jordan

57

REFERENCES
Ahn Hyo Cheol, Youn Hee Yong, Jeon Kyu Yeong, and Lee Kyu Seol, (2007), Dynamic
Load Balancing for Large-scale Distribyted System with Intelligent Fuzzy Controlier, IEEE

International Conference, pp. 576 — 581 ,

Akhtar Muhammad Waseemn, and Kechadi M-Tahar, (2006), On the Efficiency of

Dynamic Load Balancing on p2p Irregular Network Topologies, Proceedings of The

Fifth International Symposium on Parallel and Distributed Computing

(ISPDC'06), 0-7695-263 8-1/06, IEEE.

Ammar H, and Deng Su, (1988), A Simple Dynamic Load Balancing Algorithm For

Homogeneous Distributed Systems, ACM Annual Computer Science Conference,

Proceedings of the 1988 ACM sixteenth annual conference on Computer science,

pp. Pages: 314 - 319, ACM 0-89791-260-8/88/0002/03 14,

loana Banicescu, Florina M. Ciorba, and Ricolindo L. Cari'no, 2009, Towards the

robustness of dynamic loop scheduling on large-scale heterogeneous distributed

systems, 2009 Eighth International Symposium on Parallel and Distributed

Computing, 978-0-7695-3680-4/09 IEEE, pp.129-132.

Barazandeh Iman, and Mortazavi Seyed Saeedolah,(2009/a), Two Hierarchical

Dynamic Load Balancing Algorithms in Distributed Systems, 2009 Second

International Conference on Computer and Electrical Engineering, 978-0-7695.

3925-6/09, IEEE, PP.516-521.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

58

Iman, Mortazavi Seyed Saeedolah, and Mortazavi Amir Masoud, (2009/b), Intelligent Fuzzy

based Biasing Load Balancing Algorithm in Distributed Systems, Proceedings of the 2009

IEEE 9th Malaysia International Conference on Communications.

J. Barbosa, and Moreira Belmiro,(2009), Dynamic Job scheduling on heterogeneous

clusters, Eighth International Symposium on Parallel and Distributed Computing,

978-0-7695-3680-4/2009, IEEE, pp.3-10.

Mahieddine K. Benmohammed, and Dew P. M., (1994), a periodic symmetrically-

initiated load balancing algorithm for distributed systems, Distributed Computing

Systems, Proceedings of the 14th International Conference, IEEE, pPp.616 — 623,

Broberg James, Tari Zahir, and Zeephongsekul Panlop, (2005), Principles of

Distributed Systems Book, Task assignment based on priotitizing traffic flows

Chapter, Publisher: Springer Berlin / Heidelberg, DOI: 10.1007!115]6798}0,

Vo0l.3544/2005, Book Series: Lecture Notes in Computer Science, pp.415-430.1ft

Broberg James, Tari Zahir, and Zeephongsekul Panlop, (2006), Task assignment with

work-conserving migration, parallel Computing 32 (2006), pp.808-830, Science

Direct, journal website: www elsevier.com/locate/parco.

Campos Luis Miguel, and Isaac Scherson D, (2000), Rate of change load balancing in

distributed and paralle] systems, Science Direct, Parallel Computing, 26 (2000,

pp.1213-1230.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

59

Cao Jiannong, Bennett Graeme > and Zhang Kang,

load balancing algorithms with real workload distribution, The Journal of Systems

and Software, Science Direct, www.e]sevier.comllocatefjss .

Chhabra Amit, Singh Gurvinder, Waraich Sandeep Singh, Sidhu Bhavneet, and Kumar
Gaurav, (2006), Qualitative Parametric Comparison of Load Balancing Algorithms in

Parallel and Distributed Computing Environment, World Academy of Science,

Engineering and Technology, pp 39-42.

Chen Jong-Chen, Liao Guo-Xun, Hsie Jr-Sung, and Liao Cheng-Hua, (2008), A study

of the contribution made by evolutionary learning on dynamic load-balancing problems

in distributed computing systems, Science Direct, Expert Systems with Applications

34 (2008), www.elsevier.com/locate/eswa.

Choi Eunmi, (2004), Performance test and analysis for an adaptive load balancing

mechanism on distributed server cluster systems, Future Generation Computer

Systems 20 (2004), Science Direct, www.elsevier.com/locate/future .

Devine Karen D, Boman Erik G., Heaphy Robert T, Hendrickson Bruce A, Teresco

James D, Faik Jamal,

Flaherty Joseph E, and Gervasioc Luis G., (2005), New

challenges in dynamic load balancing, Applied Numerical Mathematics 572 (2005),

Science Direct, www.elsevier.comz’locatea’apnum.

2000, Direct execution simulation of

All Rights Reserved - Library of University of Jordan - Center

60

Fedorov Andriy, and Chrisochoides Nikos, (2004), Communication Support for

Dynamic Load Balancing of Irregular Adaptive Applications, International

Conference on Parallel Processing Workshops, IEEE, pp. 555 - 562 .

Fukuda Kensuke, Hirotsu Toshio, Kurihara Satoshi, Akashi Osamu, Sato Shin-ya, and

Sugawara Toshiharu, (2007), Emergent Intelligence of Networked Agents Book, The

Impact of Network Model op Performance of load balancing Chapter, Publisher;

Springer Berlin / Heidelberg, PP, 23-37, Volume 56/2007, Studies in Computational

Intelligence Book series,

Ghosh Bhaskar, and Muthukrishnan §., (1994), Dynamic Load Balancing in Parajle]

and Distributed Networks by Random Matchings, ACM Symposium on Parallel

Algorithms and Architectures, Pro'ceedings of the sixth annual ACM symposium

on Parallel algorithms and architectures, pp. 226 — 235.

Grosu Daniel, and Chronopoulos Anthony T, (2005), Non-cooperative load balancing

in distributed systems, Journal of parallel and Distributed computing.65 (2005)

1022-1034, Science Direct, ww.elsevier.comflocatefejor.

Hac Anna, (1989), Load balancing in distributed Systems: a summary, ACM

SIGMETRICS Performance Evaluation Review, Vol.16, PP.17 -19,

BALTER MOR HARCHOL-, and DOWNEY ALLEN B., 1997, Exploiting Process

Lifetime Distributions for Dynamic Load Balancing, ACM Transactions on

Computer Systems, Vol 15, No. 3, August 1997, Pages 253-285.

iversi is Deposit
All Rights Reserved - Library of University of Jordan - Center of Thesis D

61

Chang Huang Ming, Hosseini S. Hossein, and Vairavan K., (2003), A Receiver-Initiated
Load Balancing Method In Computer Networks Using Fuzzy Logic Control, Global

Telecommunications Conference, 2003. GLOBECOM '03, IEEE, pp.4028 — 4033,
Vol.7,

Jain Parveen, and Gupta Daya, (2009), An Algorithm for Dynamic Load Balancing in

Distributed Systems with Multiple Supporting Nodes by Exploiting the Interrupt

Service, International Journal of Recent Trends in Engineering, Vol 1, No. I, May

2009, pp. 232- 236,

Kwok Yu-Kwong, and Cheung Lap-Sun, (2004), A new fuzzy-decision based load

balancing system for distributed object computing, journal of paraliel and distributed

computing, 64 (2004) 23 8-253, Science Direct, www.elsevier.comx’]ocatex’j pdc.

Larroca Federico, and Rougier Jean-Louis, (2009), Traffic Management and Traffic

Engineering for the Future Internet Book, A Fair and Dynamic Load-Balancing

Mechanism chapter, Publisher: Springer Berlin / Heidelberg, pp.36-52, DOI

10.1007/978-3-642-045 76-9_3, Volume 5464/2009, Lecture Notes in Computer Science

hook series.

Li Kegin, (1998), Deterministic and Randomized Algorithms for Distributed On-line
Task Assignment and Load Balancing without Load Status Information, ACM

symposium on Applied Computing, 0-89791-969-6f98f0002, pp.613-622,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

62

Li Kegin, (2002), Minimizing the Probability of Load Imbalance in Heterogeneous

Distributed Computing Systems, journal of mathematical and computer modeling 36

(2002)1075-1084, Science Direct, journal website: www.elsevier.com/locate/eswa.

Li Yajun, Yang Yuhang, Ma Maode, and Liang Zhou, (2009), A hybrid load balancing

strategy of sequential tasks for grid computing environments, Future Generation

Computer Systems 25 (2009) 819-828, Science Direct.

Nouri Setareh, and Parsa Saeced, 2009, A Non-cooperative Approach For Load
Balancing In Heterogeneous Distributed, 2009 Fourth International Conference on

Computer Sciences and Convergence Information Technology Computing

Platform, 978-0-7695-3896-9/09, IEEE, PP.756-761.

Penmatsa, and Chronopoulos Anthony T., (2007), Dynamic Multi-User Load Balancing

in Distributed Systems, 1-4244-0910-1/07, Parallel and Distributed Processing

Symposium, 2007, IPDPS 2007, IEEE International, pp.1-10.

Perez Christian, (1997), Load Balancing HPF Programs by Migrating Virtual
Processors, IEEE.

Razzaque Md. Abdur, and Hong Choong Seon, (2007), Dynamic Load Balancing in

Distributed System: An Efficient Approach, JCCI conference 2007, Phoenix Park,

South Korea, May 2-4, 2007, Korea Research Foundation Grant, (KRF-2006-521-
D00394).

oSt

All Rights Reserved - Library of University of Jordan - Center of Thesis D

63

ROSS KEITH W., and YAQ DAVID D., (1991), Optimal Load Balancing and

Scheduling in a Distributed Computer System, Journal of Association Computing

Machinery, Vol 38, No.3, July1991, pp 676-690.

Savvas llias K, and Kechadi M-Tahar, (2004/a), Dynamic Task Scheduling in

Computing Cluster Environments, Parallel and Distributed Computing, IEEE,

Proceedings of the ISPDC/HeteroPar’04, 0-7695-22 1 0-6/04,pp.372 - 379, July/2004.

Savvas Ilias K., and Kechadj M-Tahar, (2004/b),Performance study of a dynamic task
scheduling for heterogeneous distributed systems, Operational Research journal,

Vol.4, No.3/September 2004, PP.291-303, Springer Berlin / Heidelberg.

llias K.Savvas, and M-Tahar Kechadi, (2007), Efficient Load Balancing on Irregular

Network Topologies Using Bttree Structures, Sixth International Sympesium on

Parallel and Distributed Computing (ISPDC'O7), 0-7695-2936-4/07, 1EEE.

Sharma Sandeep, Singh Sarabjit, and Sharma Meenakshi, (2008), Performance Analysis

of Load Balancing Algorithms, World Academy of Science, Engineering and

Technology 38 (2008), pp. 269- 272.

Spies Fraqois, (1996), Modeling of optimal load balancing strategy using queuing

theory, Micro-processing and Microprogramming, Vol.41, pp.555-570, Science

Direct.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

64

Vaughan John G, (1995), Incorporating job sizes in distributed load balancing, Miero-

processing and Microprogramming 41 (1995), pp.111-1 19, Science Direct.

Wang Jun, Chen Jian-Wen, Yong-Liang Wang, and Zheng Di, 2009, Intelligent Load

Balancing Strategies for Complex Distributed Simulation Applications, 2009

International Conference on Computational Intelligence and Security, 978-0-7695-

3931-7/09, IEEE, PP.182-186.

Watts Jerrell, Rieffe] Mare, and Taylor Stephen, (1996), Parallel Algorithms for

Irregularly Structured Problems Book, Practical dynamic load balancing for irregular

problems chapter, Publisher - Springer Berlin / Heidelberg, Volume 1117/1996, PP;

299-306.

Xu Jian, and Hwang Kai, (1990), Heuristic Methods for Dynamic Load Balancing in A

Message-Passing Supercomputer, Conference on High Performance Networking and

Computing, Proceedings of the 199¢ ACM/IEEE conference on Supercomputing,

IEEE Computer Society Press , Pages: 888 — §97.

Yan K.Q., Wang S.C., Chang C.P., and Lin J.S., (2007), A hybrid load balancing policy

underlying grid computing environment, Computer Standards & Interfaces 29 (2007)

161-173, Science Direct, Www.elsevier.comz’locatefejor.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

65
48 5all dugal) o B A5 gal Jraadl duaalipall ilia) gad) gl PR¥c

Jae)

P8 (b (Ao 4

H0 DA e e edl UKl i &5l (A5 sall Bdas e 5K 55 Aud Ll o o
S dsh P G deadl Ul Gy Boa) A a0 i A dae s
o dreas dlla il e sl O deadl a3l Ll 458l dadiad) Baa g

Oo dea Ala a8 a1 4054l ¢ot ¢ An e Glaa 3 sl e U s
ALLYL « ALYt 205 Al o Jla g LS 458l Al 5an il Alls Jsb
Banp aladfid Jaae) waadl 354l 138 Jreas +A9 58 yall Aadleall 5aa Al Jaae
G 251 4 gl phian Jgiie siall Jums 4 Sl o1 3 (RS el dalaal

Sl Alanul Jale Cua e 7 62.9 iy alaill ¢l

83aall Aol g L aall s diuds) 2 z 5o As Sl 4
s el O A N 5 e il 1)Y 5 da sk At e)l Al

@&M@BM‘C&\S‘I&}cgJJJMM‘mp&@J&ﬁd&ﬁéi
Ge 0 JU Bk g Aleall 5 gl Auip s oy (Al o Sl Jaeas ailla) g

-

Al Bdie Y gl ea

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

66

Y LE_.L“ - . . - - a .] i

Jraatl

Ay 4l Jale Sya e pUaill ol oy A Ay LAY G, atlaall cff

Uuﬁl..g.]ﬁ.t]'ldsoadaa_eﬁ;)’d}nﬂiajj}aéﬁ;ﬁuédcugsJ;gﬂ@Lm._}us

35y ¢ L
737

%%m‘l“

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

	

